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Abstract

The positions of twin reflections in electron diffraction

patterns obtained from thin metal foils may be calculated for any twin

in any crystal structure by means of an elementary application of vector

algebra. General equations for the four classical orientation relationships

are presented using the superscript and subscript notation of the tensor

calculus, which is briefly described. As an example of the application of

these expressions, the case of twinned rhombohedral crystals, and hence

as a special case twinned cubic crystals, is examined.



Considerable interest has recently been shown in the interpretation

of elertron diffraction patterns obtained from twinned regions of thin mptal

foils. Tn the present paper, it is shown that the necessary information may

be obtained directly for all twins in any crystal structure by means of a

very elementary application of vector algebra, The equations involved are

most conveniently presented by making use of the very powerful superscript

and subscript notation of the tensor calculus. The use of this notation will

first be described and then applied to the problem of calculating diffraction

patterns for any twinned crystal. Finallyt as an example of the application

of the method, the specific case of twinned rhombohedral crystals will be

considered.

The Tensor Notation

The triplet of primitive lattice vectors defining the edges of a

cell of the direct lattice will be represented by %. (Here, as elsewhere

in this paper, letters occurring as subscripts or superscripts may take the

values 1, 2, or 3.) The corresponding triplet of vectors defining a cell of

the reciprocal lattice will then be given by ai and these two bases will be

related by the equation ai~aiuii where i,=l when i=J and otherwise is

zero. Relations between vectors representing directions and plane normals

are most conveniently written by making use of the metric tensors aij and

aij of the bases a and a respectively are defined by the equations

j -1-



ai. -ai.a 3  and a . = a- (a)
ij- j

Each may be written as a 3x3 array. Thus for example,

as a a-a '-a
ai.~ Z2 -1.a a a *
a i !2!l 2-!2 !2-13

\a.a a_.a aa

We may now write

ka. = (b)

where, as elsewhere, indices occurring twice in an expression (always once

as a subscript and once as a superscript) are to be summed over the values 1, 2,

= la1 +aa2+ a3.
and 3 so that, for example, letting i=l in equation (b), a 1 a 1  2a.+a 02 a. -

Taking the scalar product of both sides of equation (b) with a., we obtain,
O-3

using equation (a), the identity aij=aikfjk(=aij). Also since a -=a ia- J

the scalar product of a i and a i now gives us a ipaJP- i j  The array

aij may thus be obtained by inverting the array aij as in matrix algebra.

Vectors representing lattice directions are normally resolved into components.

using the direct lattice basis. The components of a given direction

will be represented by an italic letter with a

superscript. Similarly, the Miller indices of a plane are the components of

the vector normal to the plane resolved in the reciprocal basis and are

represented by an italic letter with a subscript. By substituting for ! i and

aiit readily seen that the vector ui! representing the direction

and the vector hit representing the plane hi may be written aijuaJ and

aiJh a respectively. Using this notation the scalar product of the two

vectors ua and h aj is uAj iuii. It follows that the scalar product
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of the two vectors u ia and via is given by aiu v and of the two vectors

h.ai and k aj by a iJh k
31- i j.*1i

The General Expressions

In this paper the four classical orientation relationships associated

(4)
with deformation twinning will be considered . These are obtained by:

i) Reflection in the twinning plane KI,

(ii) Rotation of IT about the normal to ,

(iii) Rotation of Ilabout the twinning direction

(iv) Reflection in the plane normal to i 1

Relationships i) and (ii) are associated with Type I twinning in which the

K, plane has rational Miller indices and relationships (iii) and (iv) with

Type II twinning in which i is rational . Electron diffraction patterns

arising from twinned metal foils obeying other possible orientation relationship

laws are at present being examined and will be discussed elsewhere

The four orientation relationships given above are illustrated

schematically as diagrams (i) to (iv) of Fig. 1. In this figure h and u

are vectors normal to K1 and parallel to 71 respectively, and c and

represent the normals to twin related planes, the plane c being considered

to lie in the matrix. Using these diagrams, we can immediately write the

following vector equations for the four orientation relationships:

p () c-2(ceh)(heh)'li ()

p(ii) = -c+2(c.h)(h.h)'A (2)
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(iii) -c+2(c.u)(u.u)'lu (3)

(iv) c-2(c.u)(u-u)'1 u (4)

(3)Equations (1) to (4) illustrate the well-known result that, for centro-

symmetric structures, relationships (i) and (ii) are equivalent, as are

relationships (iii) and (iv).

In order to write equations (1) to (4) in terms of Miller indices,

we make use of the tensor notation. Thus, directions and planes will be

referred to the direct and reciprocal lattice bases, ai and ai , of the matrix

crystal and the vectors u, h, c, and p will be represented by u i , hi, ci, and

Pi respectively. Thus, we obtain

(I) =i-2(aiJi)(aiJhihj hi (5)

for Type I twinning and

(II) Ci2(ciui)(a ijuuU)-laijui (6)
+-Pi = i(c

for Type II twinning.

In metals many of the possible twinning modes, and indeed nearly all

of the observed modes (3 ), have both K1 aad rational, so that the

orientation relationships associated with both types of twinning may be

applicable. Furthermore, if the plane of shear, which is defined as the

plane containing the vectors h and U, is a mirror plane, as it is in most

(3) (II ) (nI)twinning modes in metals , the two planes p and pi defined by

equations(5) and (6) are crystallographically equivalent.

Spots on electron diffraction patterns from thin

foil specimens only arise from planes which are approximately parallel to

the electron beam. Thus, if the beam is parallel to a direction vi in the
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matrix crystal, a spot corresponding in the twin crystal to a plane, which

is parallel to a plane pi of the matrix and twin related to a plane ci of the

±
matrix, will only arise if the scalar product piv is approximately zero.

Thus, for a foil of known crystallographic orientation relative to the

electron beam, the diffraction pattern expected from a twinned region may be

readily determined using equations (5) and (6).*

A Specific Application

In order to illustrate the use of equations (5) and (6) and of

the tensor notation being employed, the specific example of twinning in

rhombohedral crystals, and hence as a special case in cubic crystals, will

now be examined. Letting the direct lattice be defined by a rhombohedral

cell of angle C and with unit edgeb, we obtain

= / 1 cosCC cosC( cos C 1 cos o
coso cosCL 1

and

iJ = (l+cos cc -2cos 2 c )CC l+cosc -cos c -cos

-coscc l+cose -cosC

(-cos -cosC l+cos/

so that equations (5) and (6) give

P2 (I) P3 I)) = (C1, c3)-2A(hI , h2 9 h3 )  (7)
+(pl~z ) , p2( hp,(hc2

where

(l+cos B )(c 1 h1 +c 2 h2 +c 3 h 3 )-cos OC (c 1 hr 1 h 3 +c 2 h3 +c 2 h1 +c 3 h1 +c 3 h2 )

(+cos CL) (h2 +h2 +h h3
2 )-2c oa cc (hh 2 h+h2 h3 +h3 h)

The actual calculation of diffraction patterns from equations (5) and (6) is
a routine procedure; a detailed example for a t~inned body centred cubic
crystal has been given by Mejeran and Richman(I
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and

±(p (I I) ,p2(II)3p3(II) )=(Cl C2 ,C3 )-2s (ul+cos c (u2+u3),u 2+cos c (u3+ul),u3+cos C (ul+u2)

(8)

where
1 2 3ClU +Cu U*c u 3

( (ul)2+(u2)2+(u3)2) +2 Cos CC(u u +u u +u u
(3)

Thus, for example, the reported twinning mode of the rhombohedral

metals mercury, bismuth, antimony, and arsenic has K1 =(lO) and 1-=10011,

when the face centred rhombohedral cell is used, so that the plane of shear

is the mirror plane (110) and we obtain from equations (7) and (8) the

following two crystallographically equivalent forms of i

(I)
(I) (-c2 + 2c3 co ,_c1+2c~cos @ ,c3 )

(II) (c -2c3 Cos ,c2-2c3cos C,-c 3 )

In cubic crystals we have a=T72 so that

a ij = aiJ 0 (01 I000i

ai .i 1  0 0)

and equations (7) and (8) then reduce to the form given in references (1) and

(2). Using the tensor notation, we may write these equations in the condensed

form

+_Pi I  C oi-2(c ih i ) (h ih i)' i  (9)

(I)i ii ii-
Pi = c i-2(c iu )(u u ) ui (10)
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The value of employing the powerful notation offered by the tensor calculus

is particularly evident when equations (9) and (10) are compared with the

equivalent lengthy expressions given by previous workers(1, 2) who considered

cubic crystals exclusively.

J
I
I
I
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